SUMMARY REPORT
25 ALBACORE STREET (FORMERLY 925 ALBACORE STREET)

LAUREL BAY MILITARY HOUSING AREA

MARINE CORPS AIR STATION BEAUFORT

BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095 SUMMARY REPORT
25 ALBACORE STREET (FORMERLY 925 ALBACORE STREET)

LAUREL BAY MILITARY HOUSING AREA

MARINE CORPS AIR STATION BEAUFORT

BEAUFORT, SC

Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016

CTO WE52

JUNE 2021

Table of Contents

1.0		TION1					
1.1 1.2		ND INFORMATION					
2.0	SAMPLING ACTIVITIES AND RESULTS						
2.1 2.2		VAL AND SOIL SAMPLING					
3.0	PROPERTY	STATUS4					
4.0	REFERENC	ES4					
Table	1	Table Laboratory Analytical Results - Soil					
Table	1	Edboratory Analytical Results - Soil					
		Appendices					
Appen	dix A	Multi-Media Selection Process for LBMH					
Appen		UST Assesment Report					
Appen	dix C	Regulatory Correspondence					

List of Acronyms

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CTO Contract Task Order

COPC constituents of potential concern

IDIQ Indefinite Delivery, Indefinite Quantity

IGWA Initial Groundwater Assessment

JV Joint Venture

LBMH Laurel Bay Military Housing MCAS Marine Corps Air Station

NAVFAC Mid-Lant Naval Facilities Engineering Command Mid-Atlantic

NFA No Further Action

PAH polynuclear aromatic hydrocarbon

QAPP Quality Assurance Program Plan

RBSL risk-based screening level

SCDHEC South Carolina Department of Health and Environmental Control

Site LBMH area at MCAS Beaufort, South Carolina

UST underground storage tank

VISL vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 25 Albacore Street (Formerly 925 Albacore Street). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 25 Albacore Street (Formerly 925 Albacore Street). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 925 Albacore Street* (MCAS Beaufort, 2013). The UST Assessment Report is provided in Appendix B.

2.1 UST Removal and Soil Sampling

On April 2, 2013, a single 280 gallon heating oil UST was removed from the front yard under the porch area at 25 Albacore Street (Formerly 925 Albacore Street). The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). The UST was removed and properly disposed of (i.e., shipped offsite for recycling or transported to a landfill). There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of

the UST was 5'11" bgs and a single soil sample was collected from that depth. The sample was collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 25 Albacore Street (Formerly 925 Albacore Street) were less than the SCDHEC RBSLs, which indicated the subsurface was not impacted by COPCs associated with the former UST at concentrations that presented a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for soil, SCDHEC made the determination that NFA was required for 25 Albacore Street (Formerly 925 Albacore Street). This NFA determination was obtained in a letter dated July 1, 2015. SCDHEC's NFA letter is provided in Appendix C.

4.0 REFERENCES

Marine Corps Air Station Beaufort, 2013. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report – 925 Albacore Street, Laurel Bay Military Housing Area, October 2013.

South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.

- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.

Table

Table 1

Laboratory Analytical Results - Soil 25 Albacore Street (Formerly 925 Albacore Street)

Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs (1)	Results Sample Collected 04/02/13					
Volatile Organic Compounds Analyzed by EPA Method 8260B (mg/kg)							
Benzene	0.003	ND					
Ethylbenzene	1.15	ND					
Naphthalene	0.036	ND					
Toluene	0.627	ND					
Xylenes, Total	13.01	ND					
Semivolatile Organic Compounds Ana	alyzed by EPA Method 8270D (mg/kg)						
Benzo(a)anthracene	0.66	ND					
Benzo(b)fluoranthene	0.66	ND					
Benzo(k)fluoranthene	0.66	ND					
Chrysene	0.66	ND					
Dibenz(a,h)anthracene	0.66	ND					

Notes:

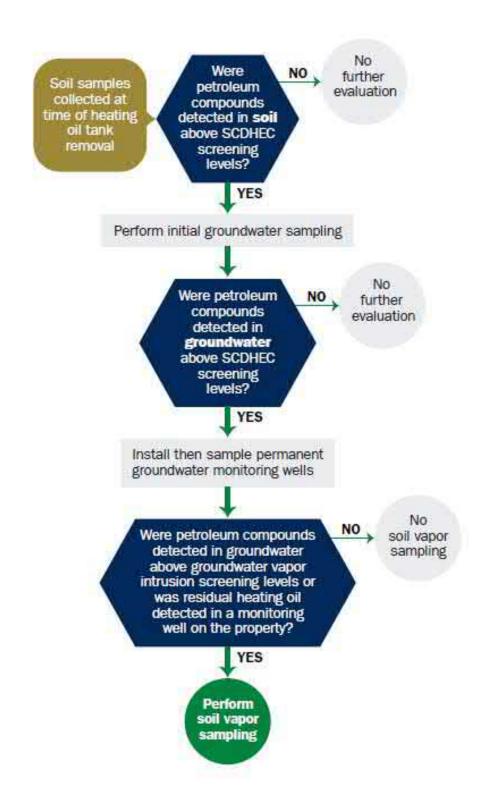
Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligram per kilogram

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The laboratory report is provided in Appendix B.


RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.0 and 3.1 (SCDHEC, May 2015 and SCDHEC, February 2016) and the Underground Storage Tank Assessment Guidelines (SCDHEC, February 2006).

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

South Carolina Department of Health and Environmental Control (SCDHEC)

Underground Storage Tank (UST) Assessment Report

RECEIVED

OCT 2 3 20143

STC DHEC - Bureau of Land & Waste Management Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

	nanding Officer Attn: NI Individual, Public Agency, Other)	REAO (Craig Ehde)	
P.O. Box 55001 Mailing Address			_
Beaufort,	South Carolina	29904-5001	
City	State	Zip Code	
843	228-7317	Craig Ehde	
Area Code	Telephone Number	Contact Person	

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. #					
Laurel Bay Milita	ry Housing Area,	Marine Corps	Air Station,	Beaufort,	SC
Facility Name or Company	Site Identifier		,		
925 Albacore Stre	eet, Laurel Bay M	Military Housi	ng Area		
Street Address or State Roa	ad (as applicable)		17, 4111		
Beaufort,	Beaufort				
City	County				

Attachment 2

III. INSURANCE INFORMATION

	Insuranc	ce Statement
qualify to receive state monie	es to pay for appropriate s fund, written confirmation	at Permit ID Number may site rehabilitation activities. Before participation is on of the existence or non-existence of an environmental mpleted.
	nere ever been an insurance NO (check one	ce policy or other financial mechanism that covers this e)
If you answere	d YES to the above ques	tion, please complete the following information:
	My policy provider is: The policy deductible is: The policy limit is:	9
If you have this type of	of insurance, please include	de a copy of the policy with this report.
I DO/DO NOT wi		UPERB Program. (Circle one.) (To be signed by the UST owner)
		familiar with the information submitted in this and all iry of those individuals responsible for obtaining this on is true, accurate, and complete.
Name (Type or print.)		
Signature		
To be completed by No	otary Public:	
Sworn before me this	day of	, 20
(Name) Notary Public for the state of		

(ex. Gas, Kerosene)		Heating oil 280 gal Late 1950s	
		Late 1950s	
San Marriel (and Steel			
tion Material(ex. Steel	, FRP)	Steel	
ear of Last Use		Mid 1980s	
) To Base of Tank		5'11"	
		No	
revention Equipment	Y/N	No	
of Closure Removed/	Filled	Removed	
ks Removed/Filled		4/2/2013	
orrosion or Pitting Y	/N	Yes	
oles Y/N	*********	Yes	
25Albacore was r	emoved from	the ground and disp	
	To Base of Tank Prevention Equipment Of Closure Removed/I Removed/Filled Orrosion or Pitting Y Toles Y/N Of disposal for any USTs 25Albacore was r tle "D" landfill	ks Removed/Filled orrosion or Pitting Y/N foles Y/N of disposal for any USTs removed from to 25Albacore was removed from the "D" landfill. See Attack	To Base of Tank

VII. PIPING INFORMATION

	925Albacore
	Steel
Construction Material(ex. Steel, FRP)	& Copper
Distance from UST to Dispenser	N/A
Number of Dispensers	N/A
Type of System Pressure or Suction	Suction
Was Piping Removed from the Ground? Y/N	No
Visible Corrosion or Pitting Y/N	Yes
Visible Holes Y/N	No
Age	Late 1950s
If any corrosion, pitting, or holes were observed, Corrosion and pitting were found	describe the location and extent for each piping d on the surface of the steel ver
pipe. Copper supply and return	
VIII. BRIEF SITE DESCR The USTs at the residences are c	리엄스 마음이 이 집 경기 중심 선생님들을 하면 하면 하지 않아 되었습니다. 그 때문 그 그 때문 그 그 때문 그
그 아이들은 그는 그 아이들은 그는 그 아이들이 되었다. 그는	constructed of single wall steel
The USTs at the residences are c	constructed of single wall steel for heating. These USTs were
The USTs at the residences are cand formerly contained fuel oil	constructed of single wall steel for heating. These USTs were
The USTs at the residences are cand formerly contained fuel oil	constructed of single wall steel for heating. These USTs were
The USTs at the residences are cand formerly contained fuel oil	constructed of single wall steel for heating. These USTs were

IX. SITE CONDITIONS

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map.		х	
 B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells? If yes, indicate location on site map and describe the odor (strong, mild, etc.) 		х	
C. Was water present in the UST excavation, soil borings, or trenches? If yes, how far below land surface (indicate location and depth)?		х	
D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal:		x	
E. Was a petroleum sheen or free product detected on any excavation or boring waters? If yes, indicate location and thickness.		х	

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

B.

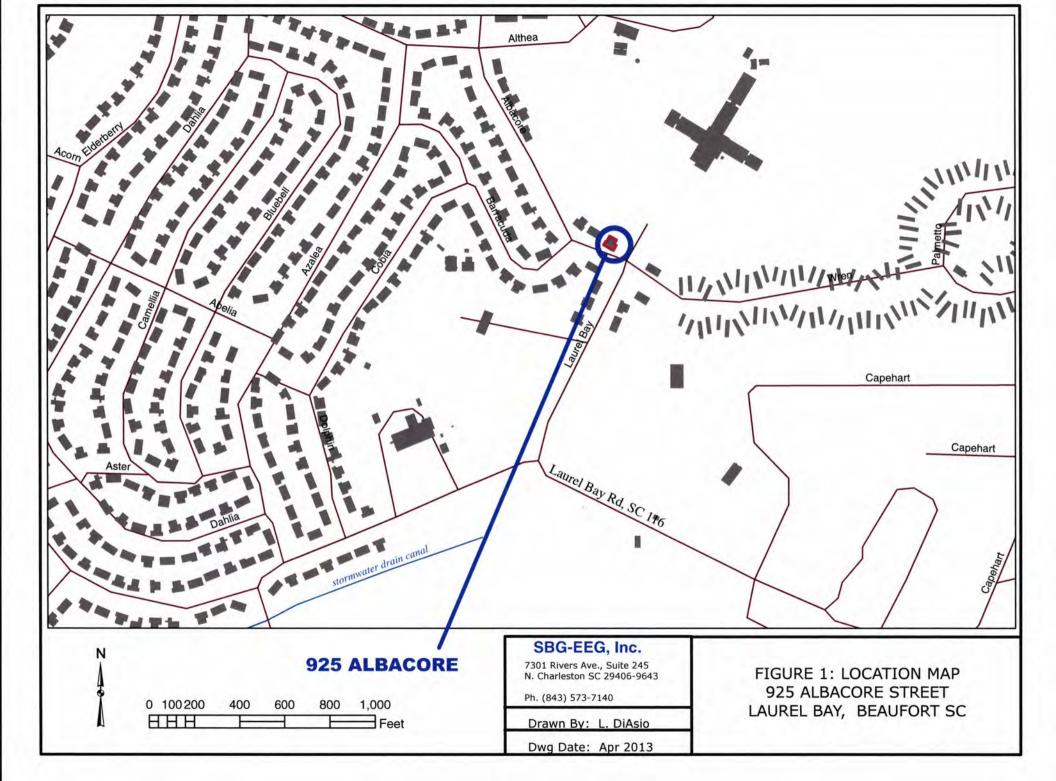
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA#
025 Albacore	Excav at fill end	Soil	Sandy	5'11"	4/2/13 1345 hrs	P. Shaw	
8							
9							
10							
11				1			
12							
13				4			
14							
15							
16							
17							
18							
19							
20							

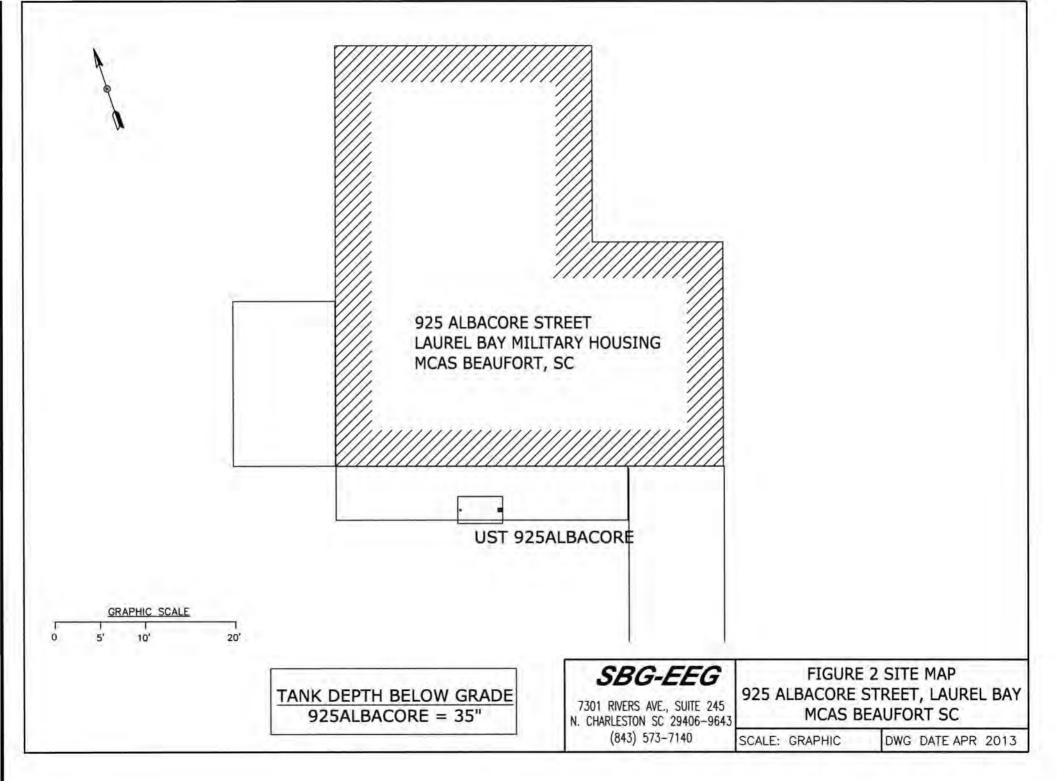
^{* =} Depth Below the Surrounding Land Surface

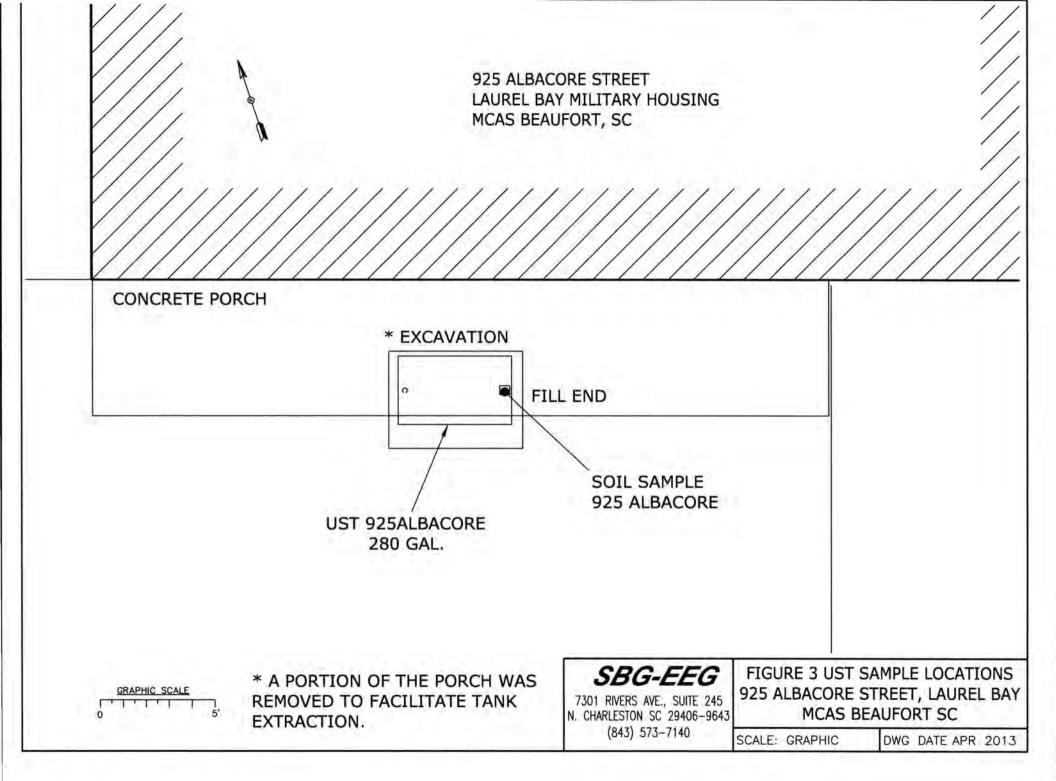
XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280
and SC DHEC Assessment Guidelines. Sample containers were prepared by the
testing laboratory. The grab method was utilized to fill the sample
containers leaving as little head space as possible and immediately
capped. Soil samples were extracted from area below tank. The
samples were marked, logged, and immediately placed in a sample cooler
packed with ice to maintain an approximate temperature of 4 degrees
Centigrade. Tools were thoroughly cleaned and decontaminated with
the seven step decon process after each use. The samples remained in
custody of SBG-EEG, Inc. until they were transferred to Test America
Incorporated for analysis as documented in the Chain of Custody Record.


XII. RECEPTORS


		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?		Х
	If yes, indicate type of receptor, distance, and direction on site map.		
В.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		Х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		Х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the	*X	
	contamination? *Sewer, water, electri	(3)	-17
	cable, fiber optic & g If yes, indicate the type of utility, distance, and direction on the site map.	eothe	rmal
Ε.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		Х
	If yes, indicate the area of contaminated soil on the site map.		


XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 925Albacore.

Picture 2: UST 925Albacore excavation.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

CoC UST	925Albacore			
Benzene	ND			
Toluene	ND			
Ethylbenzene	ND			
Xylenes	ND			
Naphthalene	ND			
Benzo (a) anthracene	ND			
Benzo (b) fluoranthene	ND			
Benzo (k) fluoranthene	ND			
Chrysene	ND			
Dibenz (a, h) anthracene	ND			
TPH (EPA 3550)				
CoC				
Benzene				
Toluene				
Ethylbenzene				
Xylenes				
Naphthalene				
Benzo (a) anthracene				
Benzo (b) fluoranthene				
Benzo (k) fluoranthene				
Chrysene				
Dibenz (a, h) anthracene				
TPH (EPA 3550)			-	

SUMMARY OF ANALYSIS RESULTS (cont'd)

Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W-1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
МТВЕ	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

Visit us at:

www.testamericainc.com

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204

Tel: (615)726-0177

TestAmerica Job ID: 490-23941-1

Client Project/Site: Laurel Bay Housing Project

For:

Environmental Enterprise Group 10179 Highway 78 Ladson, South Carolina 29456

Attn: Mr. Tom McElwee

Kuth Haye

Authorized for release by: 4/23/2013 10:13:01 AM

Ken Hayes Project Manager I

ken.hayes@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	9
QC Association	13
Chronicle	14
Method Summary	15
Certification Summary	16
Chain of Custody	
Receipt Checklists	19

Sample Summary

Matrix

Solid

Solid

Solid

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project

Client Sample ID

755 Althea

925 Albacore

741 Bluebell

Lab Sample ID

490-23941-1

490-23941-2

490-23941-3

TestAmerica Job ID: 490-23941-1

04/01/13 14:15 04/10/13 08:15

Collected

04/02/13 13:45

04/03/13 13:45

2

Received

04/10/13 08:15

04/10/13 08:15

4

6

7

8

10

Ü

12

Case Narrative

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-23941-1

Job ID: 490-23941-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-23941-1

Comments

No additional comments.

The samples were received on 4/10/2013 8:15 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.8° C.

GC/MS VOA

Method(s) 8260B: The matrix spike / matrix spike duplicate (MS/MSD) percent recoveries and %RPD for batch 71628 were outside control limits. This is attributed to: internal standard failure. MS/MSD was not reportable. See LCS/LCSD for batch precision.

No other analytical or quality issues were noted.

GC/MS Semi VOA

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

Definitions/Glossary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project

Minimum Level (Dioxin)

Quality Control

Relative error ratio

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Not detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

TestAmerica Job ID: 490-23941-1

-

5

Qualifiers

GC/MS VOA

ML

ND

PQL

RER

RL

RPD

TEF

TEQ

Qualifier	Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit

Client Sample Results

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-23941-1

F.3

Client Sample ID: 755 Althea

Date Collected: 04/01/13 14:15 Date Received: 04/10/13 08:15

2-Fluorobiphenyl (Surr)

Terphenyl-d14 (Surr)

Nitrobenzene-d5 (Surr)

General Chemistry

Analyte

Percent Solids

Lab Sample ID: 490-23941-1

Matrix: Solid

Percent Solids: 78.0

And the second s	nic Compounds								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00273	0.000913	mg/Kg	Ø	04/11/13 10:57	04/11/13 17:01	1
Ethylbenzene	ND		0.00273	0.000913	mg/Kg	32	04/11/13 10:57	04/11/13 17:01	1
Naphthalene	ND		0.00682	0.00232	mg/Kg	22	04/11/13 10:57	04/11/13 17:01	1
Toluene	0.00105	J	0.00273	0.00101	mg/Kg	27	04/11/13 10:57	04/11/13 17:01	1
Xylenes, Total	ND		0.00682	0.000913	mg/Kg	33	04/11/13 10:57	04/11/13 17:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		70 - 130				04/11/13 10:57	04/11/13 17:01	1
4-Bromofluorobenzene (Surr)	102		70 - 130				04/11/13 10:57	04/11/13 17:01	1
Dibromofluoromethane (Surr)	119		70 - 130				04/11/13 10:57	04/11/13 17:01	1
Toluene-d8 (Surr)	93		70 - 130				04/11/13 10:57	04/11/13 17:01	1
Method: 8270D - Semivolatile (Organic Compou	nds (GC/MS	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0854	0.0128	mg/Kg	D	04/11/13 11:28	04/12/13 00:44	1
Acenaphthylene	ND		0.0854	0.0115	mg/Kg	137	04/11/13 11:28	04/12/13 00:44	1
Anthracene	ND		0.0854	0.0115	mg/Kg	ø	04/11/13 11:28	04/12/13 00:44	1
Benzo[a]anthracene	ND		0.0854	0.0191	mg/Kg	12	04/11/13 11:28	04/12/13 00:44	1
Benzo[a]pyrene	ND		0.0854	0.0153	mg/Kg	T.	04/11/13 11:28	04/12/13 00:44	1
Benzo[b]fluoranthene	ND		0.0854	0.0153	mg/Kg	77	04/11/13 11:28	04/12/13 00:44	1
Benzo[g,h,i]perylene	ND		0.0854	0.0115	mg/Kg	121	04/11/13 11:28	04/12/13 00:44	1
Benzo[k]fluoranthene	ND		0.0854	0.0179	mg/Kg	12	04/11/13 11:28	04/12/13 00:44	1
1-Methylnaphthalene	ND		0.0854	0.0179	mg/Kg	13	04/11/13 11:28	04/12/13 00:44	1
Pyrene	ND		0.0854	0.0153	mg/Kg	128	04/11/13 11:28	04/12/13 00:44	1
	ND		0.0854	0.0115	mg/Kg	13	04/11/13 11:28	04/12/13 00:44	1
Phenanthrene									1
Phenanthrene Chrysene	ND		0.0854	0.0115	mg/Kg	33	04/11/13 11:28	04/12/13 00:44	
			0.0854 0.0854	0.0115 0.00893	mg/Kg mg/Kg	a	04/11/13 11:28 04/11/13 11:28	04/12/13 00:44 04/12/13 00:44	1
Chrysene	ND			0.00893					
Chrysene Dibenz(a,h)anthracene	ND ND		0.0854	0.00893	mg/Kg mg/Kg	a	04/11/13 11:28	04/12/13 00:44	1
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	ND ND ND		0.0854 0.0854	0.00893 0.0115	mg/Kg mg/Kg mg/Kg	n	04/11/13 11:28 04/11/13 11:28	04/12/13 00:44 04/12/13 00:44	1
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno[1,2,3-cd]pyrene	ND ND ND		0.0854 0.0854 0.0854	0.00893 0.0115 0.0153	mg/Kg mg/Kg mg/Kg mg/Kg	n n	04/11/13 11:28 04/11/13 11:28 04/11/13 11:28	04/12/13 00:44 04/12/13 00:44 04/12/13 00:44	1 1
Chrysene Dibenz(a,h)anthracene Fluoranthene	ND ND ND ND		0.0854 0.0854 0.0854 0.0854	0.00893 0.0115 0.0153 0.0128	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	n n	04/11/13 11:28 04/11/13 11:28 04/11/13 11:28 04/11/13 11:28	04/12/13 00:44 04/12/13 00:44 04/12/13 00:44 04/12/13 00:44	1 1 1

04/12/13 00:44

04/12/13 00:44

04/12/13 00:44

Analyzed

04/11/13 09:13

1

Dil Fac

04/11/13 11:28

04/11/13 11:28

04/11/13 11:28

Prepared

29 - 120

13 - 120

27 - 120

RL

0.10

RL Unit

0.10 %

54

65

62

78

Result Qualifier

Client Sample Results

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-23941-1

Client Sample ID: 925 Albacore

Date Collected: 04/02/13 13:45 Date Received: 04/10/13 08:15

Surrogate

Analyte

Percent Solids

2-Fluorobiphenyl (Surr)

General Chemistry

Terphenyl-d14 (Surr) Nitrobenzene-d5 (Surr) Lab Sample ID: 490-23941-2

Matrix: Solid

Percent Solids: 88.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00267	0.000896	mg/Kg	n	04/11/13 10:57	04/11/13 17:31	1
Ethylbenzene	ND		0.00267	0.000896	mg/Kg	13	04/11/13 10:57	04/11/13 17:31	1
Naphthalene	ND		0.00669	0.00227	mg/Kg	22	04/11/13 10:57	04/11/13 17:31	1
Toluene	ND		0.00267	0.000989	mg/Kg	EF	04/11/13 10:57	04/11/13 17:31	1
Kylenes, Total	ND		0.00669	0.000896	mg/Kg	E	04/11/13 10:57	04/11/13 17:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		70 - 130				04/11/13 10:57	04/11/13 17:31	1
4-Bromofluorobenzene (Surr)	101		70 - 130				04/11/13 10:57	04/11/13 17:31	1
Dibromofluoromethane (Surr)	117		70 - 130				04/11/13 10:57	04/11/13 17:31	1
Toluene-d8 (Surr)	93		70 - 130				04/11/13 10:57	04/11/13 17:31	1
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	5)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0747	0.0111	mg/Kg	22	04/11/13 11:28	04/12/13 01:06	1
Acenaphthylene	ND		0.0747	0.0100	mg/Kg	Di.	04/11/13 11:28	04/12/13 01:06	1
Anthracene	ND		0.0747	0.0100	mg/Kg	n	04/11/13 11:28	04/12/13 01:06	1
Benzo[a]anthracene	ND		0.0747	0.0167	mg/Kg	S.F	04/11/13 11:28	04/12/13 01:06	1
Benzo[a]pyrene	ND		0.0747	0.0134	mg/Kg	K	04/11/13 11:28	04/12/13 01:06	1
Benzo[b]fluoranthene	ND		0.0747	0.0134	mg/Kg	TI.	04/11/13 11:28	04/12/13 01:06	- 1
Benzo[g,h,i]perylene	ND		0.0747	0.0100	mg/Kg	n	04/11/13 11:28	04/12/13 01:06	1
Benzo[k]fluoranthene	ND		0.0747	0.0156	mg/Kg	ZI.	04/11/13 11:28	04/12/13 01:06	1
I-Methylnaphthalene	ND		0.0747	0.0156	mg/Kg	D.	04/11/13 11:28	04/12/13 01:06	1
Pyrene	ND		0.0747	0.0134	mg/Kg	100	04/11/13 11:28	04/12/13 01:06	1
Phenanthrene	ND		0.0747	0.0100	mg/Kg	u	04/11/13 11:28	04/12/13 01:06	1
Chrysene	ND		0.0747	0.0100	mg/Kg	\$2E	04/11/13 11:28	04/12/13 01:06	1
Dibenz(a,h)anthracene	ND		0.0747	0.00780	mg/Kg	12	04/11/13 11:28	04/12/13 01:06	1
Fluoranthene	ND		0.0747	0.0100	mg/Kg	Ø	04/11/13 11:28	04/12/13 01:06	1
Fluorene	ND		0.0747	0.0134	mg/Kg	D.	04/11/13 11:28	04/12/13 01:06	1
ndeno[1,2,3-cd]pyrene	ND		0.0747	0.0111	mg/Kg	CI.	04/11/13 11:28	04/12/13 01:06	1
Naphthalene	ND		0.0747	0.0100	mg/Kg	0	04/11/13 11:28	04/12/13 01:06	1
2-Methylnaphthalene	ND		0.0747	0.0178	mg/Kg	Ø	04/11/13 11:28	04/12/13 01:06	1

Limits

29 - 120

13 - 120

27 - 120

RL

0.10

RL Unit

0.10 %

%Recovery Qualifier

40 40

45

88

Result Qualifier

Analyzed

04/12/13 01:06

04/12/13 01:06

04/12/13 01:06

Analyzed

04/11/13 09:13

Prepared

04/11/13 11:28

04/11/13 11:28

04/11/13 11:28

Prepared

Dil Fac

Dil Fac

1

1

Client Sample Results

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-23941-1

- 4

Client Sample ID: 741 Bluebell

Date Collected: 04/03/13 13:45 Date Received: 04/10/13 08:15

Analyte Percent Solids Lab Sample ID: 490-23941-3

Matrix: So	lid
Percent Solids: 83	3.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00288	0.000965	mg/Kg	Ø	04/11/13 10:57	04/11/13 18:01	1
Ethylbenzene	ND		0.00288	0.000965	mg/Kg	-102	04/11/13 10:57	04/11/13 18:01	1
Naphthalene	ND		0.00720	0.00245	mg/Kg	12	04/11/13 10:57	04/11/13 18:01	1
Toluene	ND		0.00288	0.00107	mg/Kg	125	04/11/13 10:57	04/11/13 18:01	1
Xylenes, Total	ND		0.00720	0.000965	mg/Kg	D	04/11/13 10:57	04/11/13 18:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	116		70 - 130				04/11/13 10:57	04/11/13 18:01	1
4-Bromofluorobenzene (Surr)	103		70 - 130				04/11/13 10:57	04/11/13 18:01	1
Dibromofluoromethane (Surr)	120		70 - 130				04/11/13 10:57	04/11/13 18:01	1
Toluene-d8 (Surr)	91		70 - 130				04/11/13 10:57	04/11/13 18:01	1
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	3)						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0776	0.0116	mg/Kg	131	04/11/13 11:28	04/11/13 23:38	1
Acenaphthylene	ND		0.0776	0.0104	mg/Kg	D	04/11/13 11:28	04/11/13 23:38	1
Anthracene	ND		0.0776	0.0104	mg/Kg	D	04/11/13 11:28	04/11/13 23:38	1
Benzo[a]anthracene	0.424		0.0776	0.0174	mg/Kg	n	04/11/13 11:28	04/11/13 23:38	1
Benzo[a]pyrene	0.254		0.0776	0.0139	mg/Kg	a	04/11/13 11:28	04/11/13 23:38	1
Benzo[b]fluoranthene	0.508		0.0776	0.0139	mg/Kg	102	04/11/13 11:28	04/11/13 23:38	1
Benzo[g,h,i]perylene	0.124		0.0776	0.0104	mg/Kg	D	04/11/13 11:28	04/11/13 23:38	1
Benzo[k]fluoranthene	0.192		0.0776	0.0162	mg/Kg	×	04/11/13 11:28	04/11/13 23:38	1
1-Methylnaphthalene	ND		0.0776	0.0162	mg/Kg	122	04/11/13 11:28	04/11/13 23:38	1
Pyrene	0.609		0.0776	0.0139	mg/Kg	ti.	04/11/13 11:28	04/11/13 23:38	1
Phenanthrene	0.0455	J	0.0776	0.0104	mg/Kg	a	04/11/13 11:28	04/11/13 23:38	1
Chrysene	0.485		0.0776	0.0104	mg/Kg	XI.	04/11/13 11:28	04/11/13 23:38	_ 1
Dibenz(a,h)anthracene	0.0446	J .	0.0776	0.00811	mg/Kg	12	04/11/13 11:28	04/11/13 23:38	1
Fluoranthene	0.489		0.0776	0.0104	mg/Kg	n	04/11/13 11:28	04/11/13 23:38	1
Fluorene	ND		0.0776	0.0139	mg/Kg	n	04/11/13 11:28	04/11/13 23:38	1
Indeno[1,2,3-cd]pyrene	0.115		0.0776	0.0116	mg/Kg	302	04/11/13 11:28	04/11/13 23:38	1
Naphthalene	ND		0.0776	0.0104	mg/Kg	×	04/11/13 11:28	04/11/13 23:38	1
2-Methylnaphthalene	ND		0.0776	0.0185	mg/Kg	p	04/11/13 11:28	04/11/13 23:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	57		29 - 120				04/11/13 11:28	04/11/13 23:38	1
Terphenyl-d14 (Surr)	77		13 - 120				04/11/13 11:28	04/11/13 23:38	1
Nitrobenzene-d5 (Surr)	57		27 - 120				04/11/13 11:28	04/11/13 23:38	1
General Chemistry									
A.4.24.4.	Dec. 16	0	DI	DI	I Imia	n	Dropored	Analyzad	Dil Ess

Analyzed

04/11/13 09:13

Dil Fac

RL

0.10

RL Unit

0.10 %

Prepared

Result Qualifier

84

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-23941-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-71628/7

Matrix: Solid

Analysis Batch: 71628

Client Sample	ID: Method Blank
---------------	------------------

Prep Type: Total/NA

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.000670	mg/Kg			04/11/13 13:02	1
Ethylbenzene	ND		0.00200	0.000670	mg/Kg			04/11/13 13:02	1
Naphthalene	ND		0.00500	0.00170	mg/Kg			04/11/13 13:02	1
Toluene	ND		0.00200	0.000740	mg/Kg			04/11/13 13:02	1
Xylenes, Total	ND		0.00500	0.000670	mg/Kg			04/11/13 13:02	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		70 - 130		04/11/13 13:02	1
4-Bromofluorobenzene (Surr)	103		70 - 130		04/11/13 13:02	1
Dibromofluoromethane (Surr)	117		70 - 130		04/11/13 13:02	1
Toluene-d8 (Surr)	93		70 - 130		04/11/13 13:02	1

Lab Sample ID: LCS 490-71628/3

Matrix: Solid

Analysis Batch: 71628

Client Sample	ID:	Lab	Control	Sample	
		Prep	Type: 1	Total/NA	

Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
0.0500	0.05800		mg/Kg		116	75 - 127
0.0500	0.05615		mg/Kg		112	80 - 134
0.0500	0.04585		mg/Kg		92	69 - 150
0.0500	0.05455		mg/Kg		109	80 - 132
0.150	0.1634		mg/Kg		109	80 - 137
	Added 0.0500 0.0500 0.0500 0.0500	Added Result 0.0500 0.05800 0.0500 0.05615 0.0500 0.04585 0.0500 0.05455	Added Result Qualifier 0.0500 0.05800 0.0500 0.05615 0.0500 0.04585 0.0500 0.05455	Added Result Qualifier Unit 0.0500 0.05800 mg/Kg 0.0500 0.05615 mg/Kg 0.0500 0.04585 mg/Kg 0.0500 0.05455 mg/Kg	Added Result Qualifier Unit D 0.0500 0.05800 mg/Kg 0.0500 0.05615 mg/Kg 0.0500 0.04585 mg/Kg 0.0500 0.05455 mg/Kg	Added Result Qualifier Unit D %Rec 0.0500 0.05800 mg/Kg 116 0.0500 0.05615 mg/Kg 112 0.0500 0.04585 mg/Kg 92 0.0500 0.05455 mg/Kg 109

LUG		•
	The second	- 43

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		70 - 130
4-Bromofluorobenzene (Surr)	95		70 - 130
Dibromofluoromethane (Surr)	105		70 - 130
Toluene-d8 (Surr)	98		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Lab Sample ID: LCSD 490-71628/4

Matrix: Solid

Analysis Batch: 71628

Analysis Batch: 71626									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.0500	0.06098		mg/Kg		122	75 - 127	5	50
Ethylbenzene	0.0500	0.05982		mg/Kg		120	80 - 134	6	50
Naphthalene	0.0500	0.04598		mg/Kg		92	69 - 150	0	50
Toluene	0.0500	0.05759		mg/Kg		115	80 - 132	5	50
Xylenes, Total	0.150	0.1735		mg/Kg		116	80 - 137	6	50

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		70 - 130
4-Bromofluorobenzene (Surr)	96		70 - 130
Dibromofluoromethane (Surr)	105		70 - 130
Toluene-d8 (Surr)	100		70 - 130

TestAmerica Nashville

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-23941-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-71712/1-A

Lab Sample ID: LCS 490-71712/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 71697

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 71712

7

	MID	INID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0100	mg/Kg		04/11/13 11:28	04/11/13 23:16	1
Acenaphthylene	ND		0.0670	0.00900	mg/Kg		04/11/13 11:28	04/11/13 23:16	1
Anthracene	ND		0.0670	0.00900	mg/Kg		04/11/13 11:28	04/11/13 23:16	1
Benzo[a]anthracene	ND		0.0670	0.0150	mg/Kg		04/11/13 11:28	04/11/13 23:16	1
Benzo[a]pyrene	ND		0.0670	0.0120	mg/Kg		04/11/13 11:28	04/11/13 23:16	1
Benzo[b]fluoranthene	ND		0.0670	0.0120	mg/Kg		04/11/13 11:28	04/11/13 23:16	1
Benzo[g,h,i]perylene	ND		0.0670	0.00900	mg/Kg		04/11/13 11:28	04/11/13 23:16	1
Benzo[k]fluoranthene	ND		0.0670	0.0140	mg/Kg		04/11/13 11:28	04/11/13 23:16	1
1-Methylnaphthalene	ND		0.0670	0.0140	mg/Kg		04/11/13 11:28	04/11/13 23:16	11
Pyrene	ND		0.0670	0.0120	mg/Kg		04/11/13 11:28	04/11/13 23:16	1
Phenanthrene	ND		0.0670	0.00900	mg/Kg		04/11/13 11:28	04/11/13 23:16	1
Chrysene	ND		0.0670	0.00900	mg/Kg		04/11/13 11:28	04/11/13 23:16	1
Dibenz(a,h)anthracene	ND		0.0670	0.00700	mg/Kg		04/11/13 11:28	04/11/13 23:16	1
Fluoranthene	ND		0.0670	0.00900	mg/Kg		04/11/13 11:28	04/11/13 23:16	1
Fluorene	ND		0.0670	0.0120	mg/Kg		04/11/13 11:28	04/11/13 23:16	1
Indeno[1,2,3-cd]pyrene	ND		0.0670	0.0100	mg/Kg		04/11/13 11:28	04/11/13 23:16	1
Naphthalene	ND		0.0670	0.00900	mg/Kg		04/11/13 11:28	04/11/13 23:16	1
2-Methylnaphthalene	ND		0.0670	0.0160	mg/Kg		04/11/13 11:28	04/11/13 23:16	11

IR	M	IR	

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared
2-Fluorobiphenyl (Surr)	52		29 - 120	04/11/13 11:28
Terphenyl-d14 (Surr)	77		13 - 120	04/11/13 11:28
Nitrobenzene-d5 (Surr)	48		27 - 120	04/11/13 11:28

Client Sample ID: Lab Control Sample

Analyzed

04/11/13 23:16

04/11/13 23:16

04/11/13 23:16

Pren Batch: 71712

Dil Fac

1

Prep Type: Total/NA

Analysis Batch: 71697	Spike	LCS	LCS				Prep Batch: 7171 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthylene	3.33	2.038		mg/Kg		61	38 - 120
Anthracene	3.33	2.138		mg/Kg		64	46 - 124
Benzo[a]anthracene	3.33	2.077		mg/Kg		62	45 - 120
Benzo[a]pyrene	3.33	2.129		mg/Kg		64	45 - 120
Benzo[b]fluoranthene	3.33	2.136		mg/Kg		64	42 - 120
Benzo[g,h,i]perylene	3.33	2.084		mg/Kg		63	38 - 120
Benzo[k]fluoranthene	3.33	2.132		mg/Kg		64	42 - 120
1-Methylnaphthalene	3.33	1.951		mg/Kg		59	32 - 120
Pyrene	3.33	2.187		mg/Kg		66	43 - 120
Phenanthrene	3.33	2.148		mg/Kg		64	45 - 120
Chrysene	3.33	2.056		mg/Kg		62	43 - 120
Dibenz(a,h)anthracene	3.33	2.084		mg/Kg		63	32 - 128
Fluoranthene	3.33	1.996		mg/Kg		60	46 - 120
Fluorene	3.33	2.073		mg/Kg		62	42 - 120
Indeno[1,2,3-cd]pyrene	3.33	2.138		mg/Kg		64	41 - 121
Naphthalene	3,33	1.688		mg/Kg		51	32 - 120
2-Methylnaphthalene	3.33	2.001		mg/Kg		60	28 - 120

TestAmerica Nashville

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-23941-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 71712

Lab Sample ID: LCS 490-71712/2-A Matrix: Solid

Analysis Batch: 71697

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	53		29 - 120
Terphenyl-d14 (Surr)	69		13 - 120
Nitrobenzene-d5 (Surr)	49		27 - 120

Client Sample ID: 741 Bluebell

12 - 128

10 - 143

20 - 120

22 - 121

10 - 120

13 - 120

Client Sample ID: 741 Bluebell

Prep Type: Total/NA

64

53

67

61

74

Prep Batch: 71712

Prep Type: Total/NA

Lab Sample ID: 490-23941-3 MS Matrix: Solid

Analysis Batch: 71697

Dibenz(a,h)anthracene

Indeno[1,2,3-cd]pyrene

2-Methylnaphthalene

Fluoranthene

Naphthalene

Fluorene

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthylene	ND		1.97	1.360		mg/Kg	n	69	25 - 120	
Anthracene	ND		1.97	1.378		mg/Kg	10	70	28 - 125	
Benzo[a]anthracene	0.424		1.97	1.420		mg/Kg	23	51	23 - 120	
Benzo[a]pyrene	0.254		1.97	1.365		mg/Kg	13	56	15 - 128	
Benzo[b]fluoranthene	0.508		1.97	1.449		mg/Kg	33	48	12 - 133	
Benzo[g,h,i]perylene	0.124		1.97	1.294		mg/Kg	n	59	22 - 120	
Benzo[k]fluoranthene	0.192		1.97	1.532		mg/Kg	-	68	28 - 120	
1-Methylnaphthalene	ND		1.97	1.333		mg/Kg	13	68	10 - 120	
Pyrene	0.609		1.97	1.642		mg/Kg	12	52	20 - 123	
Phenanthrene	0.0455	J	1.97	1.392		mg/Kg	373	68	21 - 122	
Chrysene	0.485		1.97	1.483		mg/Kg	30	51	20 - 120	

1.97

1.97

1.97

1.97

1.97

1.97

1.296

1.538

1.317

1.304

1.193

1.449

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

MS MS

0.0446 J

ND

ND

ND

0.489

0.115

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	60		29 - 120
Terphenyl-d14 (Surr)	78		13 - 120
Nitrobenzene-d5 (Surr)	59		27 - 120

Lab Sample ID: 490-23941-3 MSD

Matrix: Solid

Analysis Batch: 71697									Prep	Batch:	71712
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthylene	ND		1.96	1.391		mg/Kg	D	71	25 - 120	2	50
Anthracene	ND		1.96	1.398		mg/Kg	CZ	71	28 - 125	1	49
Benzo[a]anthracene	0.424		1.96	1.404		mg/Kg	n	50	23 - 120	1	50
Benzo[a]pyrene	0.254		1.96	1.392		mg/Kg	11	58	15 - 128	2	50
Benzo[b]fluoranthene	0.508		1.96	1.510		mg/Kg	O	51	12 - 133	4	50
Benzo[g,h,i]perylene	0.124		1.96	1.293		mg/Kg	n	60	22 - 120	0	50
Benzo[k]fluoranthene	0.192		1.96	1.501		mg/Kg	n	67	28 - 120	2	45
1-Methylnaphthalene	ND		1.96	1.419		mg/Kg	335	72	10 - 120	6	50
Pyrene	0.609		1.96	1.625		mg/Kg	TI.	52	20 - 123	1	50
Phenanthrene	0.0455	J	1.96	1.421		mg/Kg	33	70	21 - 122	2	50
Chrysene	0.485		1.96	1.385		mg/Kg	Ħ	46	20 - 120	7	49

TestAmerica Nashville

Page 11 of 19

4/23/2013

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-23941-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 490-23941-3 MSD

Matrix: Solid

Analysis Batch: 71697

Client	Sample	ID: 741	Bluebell
	Dane	Towner	T-4-LINIA

Prep Type: Total/NA

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dibenz(a,h)anthracene	0.0446	J	1.96	1.323		mg/Kg	n	65	12 - 128	2	50
Fluoranthene	0.489		1.96	1.409		mg/Kg	13	47	10 - 143	9	50
Fluorene	ND		1.96	1.357		mg/Kg	Ħ	69	20 - 120	3	50
Indeno[1,2,3-cd]pyrene	0.115		1.96	1.297		mg/Kg	n	60	22 - 121	1.	50
Naphthalene	ND		1.96	1.225		mg/Kg	121	62	10 - 120	3	50
2-Methylnaphthalene	ND		1.96	1.449		mg/Kg	Ø	74	13 - 120	0	50

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	60		29 - 120
Terphenyl-d14 (Surr)	75		13 - 120
Nitrobenzene-d5 (Surr)	58		27 - 120

Prep Batch: 71712

Client Sample ID: 755 Althea

Method: Moisture - Percent Moisture

Lab Sample ID: 490-23941-1 DU

Matrix: Solid

Analysis Batch: 71624

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Solids	78		76		%		2	20

QC Association Summary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project

Method Blank

TestAmerica Job ID: 490-23941-1

8260B

Z

GC/MS VOA

Analysis Batch: 71628

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-23941-1	755 Althea	Total/NA	Solid	8260B	71690
490-23941-2	925 Albacore	Total/NA	Solid	8260B	71690
490-23941-3	741 Bluebell	Total/NA	Solid	8260B	71690
LCS 490-71628/3	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 490-71628/4	Lab Control Sample Dup	Total/NA	Solid	8260B	

Total/NA

Solid

7

MB 490-71628/7 Prep Batch: 71690

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-23941-1	755 Althea	Total/NA	Solid	5035	
490-23941-2	925 Albacore	Total/NA	Solid	5035	
490-23941-3	741 Bluebell	Total/NA	Solid	5035	

9

GC/MS Semi VOA

Analysis Batch: 71697

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-23941-1	755 Althea	Total/NA	Solid	8270D	71712
490-23941-2	925 Albacore	Total/NA	Solid	8270D	71712
490-23941-3	741 Bluebell	Total/NA	Solid	8270D	71712
490-23941-3 MS	741 Bluebell	Total/NA	Solid	8270D	71712
490-23941-3 MSD	741 Bluebell	Total/NA	Solid	8270D	71712
LCS 490-71712/2-A	Lab Control Sample	Total/NA	Solid	8270D	71712
MB 490-71712/1-A	Method Blank	Total/NA	Solid	8270D	71712

13

Prep Batch: 71712

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-23941-1	755 Althea	Total/NA	Solid	3550C	
490-23941-2	925 Albacore	Total/NA	Solid	3550C	
490-23941-3	741 Bluebell	Total/NA	Solid	3550C	
490-23941-3 MS	741 Bluebell	Total/NA	Solid	3550C	
490-23941-3 MSD	741 Bluebell	Total/NA	Solid	3550C	
LCS 490-71712/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 490-71712/1-A	Method Blank	Total/NA	Solid	3550C	

General Chemistry

Analysis Batch: 71624

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-23941-1	755 Althea	Total/NA	Solid	Moisture	
490-23941-1 DU	755 Althea	Total/NA	Solid	Moisture	
490-23941-2	925 Albacore	Total/NA	Solid	Moisture	
490-23941-3	741 Bluebell	Total/NA	Solid	Moisture	

Lab Chronicle

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project

TestAmerica Job ID: 490-23941-1

Client Sample ID: 755 Althea

Date Collected: 04/01/13 14:15 Date Received: 04/10/13 08:15 Lab Sample ID: 490-23941-1

Matrix: Solid

Percent Solids: 78.0

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			71690	04/11/13 10:57	ML	TAL NSH
Total/NA	Analysis	8260B		1	71628	04/11/13 17:01	МН	TAL NSH
Total/NA	Prep	3550C			71712	04/11/13 11:28	JP	TAL NSH
Total/NA	Analysis	8270D		1	71697	04/12/13 00:44	KP	TAL NSH
Total/NA	Analysis	Moisture		1	71624	04/11/13 09:13	RS	TAL NSH

Lab Sample ID: 490-23941-2

8

Date Collected: 04/02/13 13:45

Client Sample ID: 925 Albacore

Date Received: 04/10/13 08:15

Matrix: Solid

Percent Solids: 88.0

	Batch	Batch	122	Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			71690	04/11/13 10:57	ML	TAL NSH
Total/NA	Analysis	8260B		1	71628	04/11/13 17:31	МН	TAL NSH
Total/NA	Prep	3550C			71712	04/11/13 11:28	JP	TAL NSH
Total/NA	Analysis	8270D		1	71697	04/12/13 01:06	KP	TAL NSH
Total/NA	Analysis	Moisture		1	71624	04/11/13 09:13	RS	TAL NSH

Client Sample ID: 741 Bluebell

Date Collected: 04/03/13 13:45

Date Received: 04/10/13 08:15

Lab Sample ID: 490-23941-3

Matrix: Solid

Percent Solids: 83.6

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			71690	04/11/13 10:57	ML	TAL NSH
Total/NA	Analysis	8260B		1	71628	04/11/13 18:01	МН	TAL NSH
Total/NA	Prep	3550C			71712	04/11/13 11:28	JP	TAL NSH
Total/NA	Analysis	8270D		1	71697	04/11/13 23:38	KP	TAL NSH
Total/NA	Analysis	Moisture		1	71624	04/11/13 09:13	RS	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method Summary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project

TestAmerica Job ID: 490-23941-1

2

-

4

6

8

10

118

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL NSH
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
Moisture	Percent Moisture	EPA	TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Certification Summary

Client: Environmental Enterprise Group Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-23941-1

Laboratory: TestAmerica Nashville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	ACIL		393	10-30-13
A2LA	ISO/IEC 17025		0453.07	12-31-13
Alabama	State Program	4	41150	05-31-13
Alaska (UST)	State Program	10	UST-087	07-24-13
Arizona	State Program	9	AZ0473	05-05-13
Arkansas DEQ	State Program	6	88-0737	04-25-13
California	NELAP	9	1168CA	10-31-13
Connecticut	State Program	1	PH-0220	12-31-13
Florida	NELAP	4	E87358	06-30-13
llínois	NELAP	5	200010	12-09-13
owa	State Program	7	131	05-01-14
Kansas	NELAP	7	E-10229	10-31-13
Kentucky (UST)	State Program	4	19	09-15-13
Louisiana	NELAP	6	30613	06-30-13
Maryland	State Program	3	316	03-31-14
Massachusetts	State Program	1	M-TN032	06-30-13
Minnesota	NELAP	5	047-999-345	12-31-13
Mississippi	State Program	4	N/A	06-30-13
Montana (UST)	State Program	8	NA	01-01-15
Nevada	State Program	9	TN00032	07-31-13
New Hampshire	NELAP	1	2963	10-10-13
New Jersey	NELAP	2	TN965	06-30-13
New York	NELAP	2	11342	04-01-14
North Carolina DENR	State Program	4	387	12-31-13
North Dakota	State Program	8	R-146	06-30-13
Ohio VAP	State Program	5	CL0033	01-19-14
Oregon	NELAP	10	TN200001	04-30-13
Pennsylvania	NELAP	3	68-00585	06-30-13
Rhode Island	State Program	1	LAO00268	12-30-13
South Carolina	State Program	4	84009 (001)	04-30-14 *
South Carolina	State Program	4	84009 (002)	02-23-14
Tennessee	State Program	4	2008	02-23-14
Texas	NELAP	6	T104704077-09-TX	08-31-13
JSDA	Federal		S-48469	11-02-13
Jtah	NELAP	8	TAN	06-30-13
/irginia	NELAP	3	460152	06-14-13
Vashington	State Program	10	C789	07-19-13
West Virginia DEP	State Program	3	219	02-28-14
Visconsin	State Program	5	998020430	08-31-13
Wyoming (UST)	A2LA	8	453.07	12-31-13

TestAmerica Nashville

^{*} Expired certification is currently pending renewal and is considered valid.

Nashville, TN

COOLER RECEIPT FORM

106000 100 000 100				111111
490-23941	Chain	of	Cust	od

Cooler Received/Opened On: 04/10/13 @ 0815 Tracking # 9860 (last 4 digits, FedEx)	400 23041 Chain
Tracking #(last 4 digits, FedEx)	490-2594 Chair
Courier: Fed-ex IR Gun ID: 95610068	
1. Temperature of rep. sample or temp blank when opened: 9.8 Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO. NA
4. Were custody seals on outside of cooler?	YESNONA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	YES NONA
I certify that I opened the cooler and answered questions 1-6 (Intial)	5
7. Were custody seals on containers: YES (10) and Intact	YES NO NA
Were these signed and dated correctly?	YESNO. (NA
8. Packing mat'l used Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	r Other None
9. Cooling process: (ce lce-pack lce (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	ESNONA
12. Did all container labels and tags agree with custody papers?	ESNONA
13a. Were VOA vials received?	ESNONA
b. Was there any observable headspace present in any VOA vial?	YES. NONA
14. Was there a Trip Blank in this cooler? YESNO. NA If multiple coolers, sequen	ce #
I certify that I unloaded the cooler and answered questions 7-14 (Intial)	A
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA
b. Did the bottle labels indicate that the correct preservatives were used	ESNONA
16. Was residual chlorine present?	YESNO. (NA)
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	EA
17. Were custody papers properly filled out (ink, signed, etc)?	ESNONA
18. Did you sign the custody papers in the appropriate place?	ESNONA
19. Were correct containers used for the analysis requested?	ESNONA
20. Was sufficient amount of sample sent in each container?	YESNONA
I certify that I entered this project into LIMS and answered questions 17-20 (Intial)	× / 11 11
I certify that I attached a label with the unique LIMS number to each container (intial)	

21. Were there Non-Conformance issues at login? YES..(NO) Was a NCM generated? YES..(NO).#

Relinguished by: /	Relinguistor	opecial instructions:					7 0 8 20 20 20 20 20 20 20 20 20 20 20 20 20	741 Blumbell	935 Albacora	755 A/theA	Sample ID / Description		Sampler Signature:	Sampler Name: (Print)	Telephone Num	Project Mana	City/State	Addr	Client Name/Accou	TestAmerica THE LEADER IN ENVIRONMENTAL TESTING
, bate Time	4/9/13 Onc							2 502/ 2/1/6	1/2/13/13455	4/1/13 1415 5	Date Sampled Time Sampled No. of Containers Shipped	1017	Se to	Marshall and Charles	Telephone Number: 843.412.2097	Project Manager: Tom McElwee email: moelwee@eeginc.net	City/State/Zip: Ladson, SC 29456	Address: 10179 Highway 78	Client Name/Account #: EEG - SBG # 2449	Nerica Nashville Division 2960 Foster Creighton Nashville, TN 37204
Received by Pass Merica:	Received b	Method of Shipment:					-		<u> </u>	x	Grab Composite Field Filtered Ice HNO ₃ (Red Label) HOH (Blow Label) NaOH (Orange Label) H ₂ SO ₄ Plastic (Yellow Label) None (Black Label)	ΔI		,	Fax No.: 843-875	ginc.net				n Phone: 615-726-0177 ghton Toll Free: 800-765-0980 204 Fax: 615-726-3404
TAN 410-13 815 48	Date Time	FEDEX					1	× ×		~ × ×	Other (Specify) Michael Groundwater Wastewater Drinking Water Sludge Soll Other (specify): BTEX + Napth - 8260	Matrix	Project #:		1001 TAQ		Site St			-0177 -0980 -3404
2		Temperature Upon Receipt VOCs Free of Headspace?						×		<i>x</i>	PAH - 8270D	Analyze For:	4	Project ID: Laurel Bay Housing Project	6井	PO#: 1035	Site State: SC	Enforcement Action?	Compliance Monitoring?	To assist us in using the proper analytical methods, is this work being conducted for regulatory purposes?
		۲.									2394 % Extended TAT							YesNo	Yes No	
		z	1	+	_	+	-			_	Fax Results Send QC with report	1								

4/23/2013

Login Sample Receipt Checklist

Client: Environmental Enterprise Group

Job Number: 490-23941-1

Login Number: 23941

List Source: TestAmerica Nashville

List Number: 1

Creator: Abernathy, Eric

Creator: Abernathy, Eric		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	

True

N/A

Samples do not require splitting or compositing.

Residual Chlorine Checked.

ATTACHMENT A

NON-HAZARDOUS MANIFEST

	T				1						
NON-HAZARDOUS MANIFEST	1. Generator's US	EPA ID No.	Manifest Doc	No.	2. Page 1						
3. Generator's Mailing Address: MCAS BEAUFORT LAUREL BAY HOUSING BEAUFORT, SC 29904		Generator's Site Addres	S (If different than n	nailing):		st Number MNA B. State	01519145 Generator's ID				
4. Generator's Phone 843-8 5. Transporter 1 Company Name	79-0411	6. US E	PA ID Number								
7. Transporter 2 Company Name		8. US E	PA ID Number		C. State Transporter's ID D. Transporter's Phone						
0					E. State Transporter's ID F. Transporter's Phone						
9. Designated Facility Name and Site HICKORY HILL LANDFILL 2621 LOW COUNTRY DRIVE RIDGELAND, SC 29936	e Address	10. US	EPA ID Number		G. State F H. State F	acility ID acility Phone	843-987-4643				
11. Description of Waste Materials			12. C	ontainers Type	13. Total Quantity	14. Unit Wt./Vol.	I. Misc. Comments				
a. HEATING OIL TANK FILLED WM Pro	WITH SAND		1	204	8.29	TON	705980				
b. WM Profile #	me# 1020333C										
c. WM Profile #											
d.						MILE					
WM Profile # J. Additional Descriptions for Mate			K. Dispo	sal Location							
			Cell Grid				Level				
15. Special Handling Instructions and ST 15 14 14 Purchase Order # 16. GENERATOR'S CERTIFICATE: I hereby certify that the above-descraccurately described, classified and printed Name	ibed materials are no	741 B'lul EMERGENC ot hazardous wastes as	nsportation acc	HONE NO.:	or any applic	Cable state la	w, have been fully and				
17. Transporter 1 Acknowledgement	t of Receipt of Mater			AC)	7-		1613				
Printed Name 18. Transporter 2 Acknowledgement	t of Receipt of Mater	Signature	CI	11			Month Day Year				
Printed Name JAMES BALO	Jw.N	Signature	us Ba	600			Month Day Year 4 16 13				
 Certificate of Final Treatment/Did certify, on behalf of the above listed applicable laws, regulations, permits Facility Owner or Operator: Certification 	treatment facility, t and licenses on the	dates listed above.				as managed i	in compliance with all				
Printed Name White- TREATMENT, STORAGE, DISP	14	Signature	m Co	tril	d	llow- GENERA	Month Day Year				

Gold-TRANSPORTER #1 COPY

Pink- FACILITY USE ONLY

Appendix C Regulatory Correspondence

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

July 1, 2015

Commanding Officer
Attention: NREAO Mr. William A. Drawdy
United State Marine Corps Air Station
Post Office Box 55001
Beaufort, SC 29904-5001

RE: No Further Action

Laurel Bay Underground Storage Tank Assessment Reports for:

See attached sheet

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the referenced Underground Storage Tanks (USTs) Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports and agrees there is no indication of soil or groundwater contamination on these properties, and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

Kent Krieg

Department of Defense Corrective Action Section

Bureau of Land and Waste Management

South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email)

Craig Ehde (via email) Bryan Beck (via email)

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

Attachment to: Krieg to Drawdy

Subject: NFA
Dated 7/1/2015

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks)

111 Birch 363 Aspen 123 Banyan 364 Aspen 131 Banyan 366 Aspen 134 Banyan 369 Aspen 145 Laurel Bay 373 Aspen 150 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 201 Balsam 420 Elderberry 202 Balsam 424 Elderberry 203 Balsam 452 Elderberry 204 Balsam 452 Elderberry 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 487 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 313 Ash 628 Dahlia 337	111 Direct	262 Asman
131 Banyan 366 Aspen 134 Banyan 369 Aspen 145 Laurel Bay 373 Aspen 150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 200 Balsam 410 Elderberry 200 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 313 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 1 641 Dahlia		
134 Banyan 369 Aspen 145 Laurel Bay 373 Aspen 150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 225 Beech Tank 2 513 Laurel Bay 252 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 313 Ash 612 Dahlia 314 Ash 628 Dahlia 315 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2		1
145 Laurel Bay 373 Aspen 150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 452 Elderberry 210 Balsam 460 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 251 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia <td></td> <td>1</td>		1
150 Laurel Bay 381 Aspen 153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 422 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	<u> </u>	
153 Laurel Bay 401 Elderberry 154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 284 Birch Tank 2 524 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	•	
154 Laurel Bay 402 Elderberry 155 Laurel Bay 404 Elderberry 200 Balsam 410 Elderberry 203 Balsam 420 Elderberry 208 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia		1
155 Laurel Bay		
200 Balsam 410 Elderberry 202 Balsam 420 Elderberry 208 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia		ž
202 Balsam 420 Elderberry 203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	v	ž
203 Balsam 424 Elderberry 208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia		J
208 Balsam 435 Elderberry Tank 3 210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487 Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	202 Balsam	420 Elderberry
210 Balsam 452 Elderberry 211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 284 Birch Tank 2 524 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	203 Balsam	424 Elderberry
211 Balsam 460 Elderberry 220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 284 Birch Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	208 Balsam	435 Elderberry Tank 3
220 Cypress 465 Dogwood 222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	210 Balsam	452 Elderberry
222 Cypress 477 Laurel Bay 223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 337 Ash 628 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	211 Balsam	460 Elderberry
223 Cypress 487Laurel Bay 252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	220 Cypress	465 Dogwood
252 Beech Tank 2 513 Laurel Bay 271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	222 Cypress	477 Laurel Bay
271 Beech Tank 1 519 Laurel Bay 271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	223 Cypress	487Laurel Bay
271 Beech Tank 2 524 Laurel Bay 284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	252 Beech Tank 2	513 Laurel Bay
284 Birch Tank 1 535 Laurel Bay 284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	271 Beech Tank 1	519 Laurel Bay
284 Birch Tank 2 553 Dahlia 308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	271 Beech Tank 2	524 Laurel Bay
308 Ash 590 Aster 311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 355 Ash Tank 1 641 Dahlia	284 Birch Tank 1	535 Laurel Bay
311 Ash 591 Aster 312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	284 Birch Tank 2	553 Dahlia
312 Ash 610 Dahlia 317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	308 Ash	590 Aster
317 Ash 612 Dahlia 318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	311 Ash	591 Aster
318 Ash 628 Dahlia 337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	312 Ash	610 Dahlia
337 Ash 636 Dahlia 351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	317 Ash	612 Dahlia
351 Ash Tank 1 637 Dahlia Tank 1 351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	318 Ash	628 Dahlia
351 Ash Tank 2 637 Dahlia Tank 2 355 Ash Tank 1 641 Dahlia	337 Ash	636 Dahlia
355 Ash Tank 1 641 Dahlia	351 Ash Tank 1	637 Dahlia Tank 1
355 Ash Tank 1 641 Dahlia	351 Ash Tank 2	637 Dahlia Tank 2
355 Ash Tank 2 642 Dahlia Tank 1	355 Ash Tank 2	642 Dahlia Tank 1
360 Aspen 642 Dahlia Tank 2	360 Aspen	

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks) cont.

655 Camellia	920 Albacore
662 Camellia	922 Barracuda Tank 1
683 Camellia	922 Barracuda Tank 2
684 Camellia	924 Albacore
689 Abelia	925 Albacore
694 Abelia	926 Albacore
695 Abelia	930 Albacore
741 Blue Bell	931 Albacore
742 Blue Bell	933 Albacore
755 Althea	936 Albacore
757 Althea	938 Albacore
776 Laurel Bay	939 Albacore
777 Azalea	940 Albacore
779 Laurel Bay	1010 Foxglove
781 Laurel Bay	1066 Gardenia
802 Azalea	1068 Gardenia
816 Azalea	1071 Heather Tank 2
822 Azalea	1100 Iris Tank 2
823 Azalea	1128 Iris
825 Azalea	1178 Bobwhite
828 Azalea	1204 Cardinal
837 Azalea	1208 Cardinal
851 Dolphin	1209 Cardinal
856 Dolphin	1210 Cardinal
857 Dolphin	1215 Cardinal
861 Dolphin	1216 Cardinal
864 Dolphin	1217 Cardinal Tank 1
868 Dolphin	1217 Cardinal Tank 2
872 Dolphin	1233 Dove
879 Cobia	1244 Dove
886 Cobia	1250 Dove
888 Cobia	1252 Dove
889 Cobia	1254 Dove
901 Barracuda	1256 Dove
902 Barracuda	1258 Dove
903 Barracuda	1263 Dove
904 Barracuda	1269 Dove
909 Barracuda	1276 Dove
910 Barracuda	1283 Dove
914 Barracuda	1285 Dove
915 Barracuda	1288 Eagle

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks) cont.

1296 Eagle	1330 Albatross
1307 Eagle	1331 Albatross
1321 Albatross	1333 Albatross
1322 Albatross	1334 Albatross
1327 Albatross	1335 Albatross
1328 Albatross	